
TIE-51106 Computer Arithmetic 20.08.2014 1

No Topic

1. Number systems
2. Fixed point (FXP) addition: theory
3. FXP adders: basic implementations, speed-up techniques
4. SD number system
5. FXP multiplication: basics
6. FXP multiplication: speed-up techniques
7. FXP multiplication: implementations
8. FXP division: basics, speed-up techniques

9. FXP division: speed-up techniques, implementations

10. Floating point numbers: basics
11. Floating point numbers: rounding

12. Arithmetic Optimization Techniques

TIE-51106 Computer Arithmetic 20.08.2014 2

MULTIPLIER IMPLEMENTATIONS

 Multiplication involves two operations

1. Generation of partial products
2. Accumulation of partial products

 Two ways to speed up multiplication

1. Reduce the number of partial products (previous lecture)
2. Accelerate accumulation of partial products (this lecture)

 Classification of high-speed multipliers

1. Sequential multipliers: generate the partial products sequentially and add each

newly generated product to the previously accumulated partial product
2. Parallel multipliers: generate all partial products in parallel and then use a fast multi-

operand adder for their accumulation
3. Cellular array multipliers: made up of an array of identical cells that generate new

partial products and accumulate them simultaneously, no separate circuits for partial
product generation and their accumulation

TIE-51106 Computer Arithmetic 20.08.2014 3

1. SEQUENTIAL MULTIPLIERS

1.1. Sequential multiplier for serial 1-bit scanning

 Partial product and multiple of A are

added up bit-serially
  each accumulation takes n cycles
  multiplier bit is held unchanged
 during this time

PPH = MSBs of partial product
PPL = LSBs of partial product

 Serial multiplication requires n2 cycles for result

 Suitable for all number systems (Sam, 1’s, 2’s, unsigned)

 Simple implementation, low-cost

TIE-51106 Computer Arithmetic 20.08.2014 4

EXAMPLE Multiply A = 1012 = 510 and B = 011 = 310 using serial multiplier

cycle A B ci X y co s PPH PPL

Result: 0011112 = 1510

1. 101 011 0 1 0 0 1 000 ---
 100
2. 110 011 0 0 0 0 0
 010
3. 011 011 0 1 0 0 1
 101
Shift partial product 010 1--
4. 101 101 0 1 0 0 1
 101
5. 110 101 0 0 1 0 1
 110
6. 011 101 0 1 0 0 1
 111
Shift second partial product 011 11-
7. 101 110 0 0 1 0 1
 101
8. 110 110 0 0 1 0 1
 110
9. 011 110 0 0 0 0 0
 011
Shift last partial product 001 111

TIE-51106 Computer Arithmetic 20.08.2014 5

1.2. Serial-parallel multiplier (1-bit scanning)

 2a 1a 0a
 2b 1b 0b
 2 0a b 1 0a b 0 0a b
 2 1a b 1 1a b 0 1a b

2 2a b 1 2a b 0 2a b

2 2a b 2 1a b + 1 2a b 2 0a b + 1 1a b + 0 2a b 1 0a b + 0 1a b 0 0a b

Cycle Stage I Stage II Stage III

1 0 0a b 0 0a b 0 0a b
2 1 0a b 1 0a b + 0 1a b 1 0 0 1a b a b
3 2 0a b 2 0a b + 1 1a b 2 0 1 1 0 2a b a b a b 
4 0 2 1a b 2 1 1 2a b a b
5 0 0 2 2a b

 Note: aibj is called a summand

Stage I

FA

coci

y
x

s
FA

coci

y
x

s

FFFF

FF FF

a2, a1, a0

b0 b1 b2

p0, p1, p2

Stage II Stage IIIStage I

FA

coci

y
x

s
FA

coci

y
x

s

FFFFFFFF

FFFF FFFF

a2, a1, a0

b0 b1 b2

p0, p1, p2

Stage II Stage III

TIE-51106 Computer Arithmetic 20.08.2014 6

1.3 Sequential multiplier for parallel 1 –bit scanning

 Generic multiplier block diagram:

B
multiplier

A
multiplicand

multiple
select

adder

partial
product

TIE-51106 Computer Arithmetic 20.08.2014 7

 Basic implementation for right-shift method

 Summands are generated parallel in each cycle
 One cycle: add multiple of A into partial product
 n cycles needed to complete operation
 n+1 –bit adder required for intermediate overflows

adder

multiplier
register (B)

accumulator
(AC register)

multiplicand
register (A)

multiple select
(AND-gate)

b0

TIE-51106 Computer Arithmetic 20.08.2014 8

EXAMPLE
 Reg AC Reg B A = 00101  Note how the multiplier bits are shifted out

and replaced by the LSB part of the partial
product (and final result)

 The example applies to unsigned numbers

multiplication: note the zeros shifted in to
the AC-register

 More complicated with signed numbers!

(0)p 00000 01011
add A 00101
2 (1)p 00101 01011
shift 00010 10101 1 omit 1
add A 00101
2 (2)p 00111 10101
shift 00011 11010 1 omit 1
add zero 00000
2 (3)p 00011 11010
shift 00001 11101 0 omit 0
add A 00101
2 (4)p 00110 11101
shift 00011 01110 1 omit 1
add zero 00000
2 (5)p 00011 01110
shift 00001 10111 0 omit 0

Final result 00001 10111

adder

multiplier
register (B)

accumulator
(AC register)

multiplicand
register (A)

multiple select
(AND-gate)

b0

TIE-51106 Computer Arithmetic 20.08.2014 9

1.4 Sequential multipliers for m –bit scanning and m –bit recoding

 Scanning and recoding differ in multiple count, type and shift length

 Both require

1. Multiple generation
2. Selection of proper multiple
3. Accumulation of partial product (= addition of multiple)

 Implementations differ in how above are arranged and / or combined

TIE-51106 Computer Arithmetic 20.08.2014 10

EXAMPLE

2-bit non-overlapping scanning (radix-4 multiplication)

 Multiples (0, A, 2A, and 3A) are

generated before operation

 Depending on multiplier bits,

one of possible multiplies is
added into partial product per
cycle

0a 2a
3a

AC
Multiplier

2-bit shifts

00 01 10 11
Mux

a

TIE-51106 Computer Arithmetic 20.08.2014 11

EXAMPLE

2-bit non-overlapping scanning (radix-4 multiplication)

 Multiples (0, A, 2A, 3A)
 Generated on the fly
 Selected by multiplier bits

 Overflow / sign extension handled
as described earlier for 1’s, 2’s,
SaM numbers

CSA
adder

multiplier
register (B)2A

A

b1b0

CPA
adder

AND AND

TIE-51106 Computer Arithmetic 20.08.2014 12

 One multiple is added in each cycle

cycle 1
cycle 2
cycle 3

b0b1b2b3b4b5. . .

. . .
M1

M2
M3

 Note: M1 = 0, A, 2A or 3A depending on 1 0b b

 M2 = 0, A, 2A or 3A depending on 3 2b b

 More than one multiple can be added during one cycle, because multiples can be
obtained independently

TIE-51106 Computer Arithmetic 20.08.2014 13

EXAMPLE
 2-bit look-behind recoding

b-1=0b0b1b2b3b4b5. . .

. . .

cycle 1
cycle 2
cycle 3

M1
M2

M3
 One multiple is added in each cycle

Mi

 More than one multiple can be added during one cycle, because multiples can be
obtained independently

TIE-51106 Computer Arithmetic 20.08.2014 14

2. PARALLEL MULTIPLIERS

2.1. Basic method

 0 1 0 1
 0 0 1 0

0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 1 0 M4 M3 M2 M1

 4-input 8-bit

adder

 p
 Note sign extension to multiples

 Adder will be large and wasteful because of sign extended bits

 For parallel addition in simpler hardware, summands may be added column-wise using

(m, n)-counters (CSA adders)

TIE-51106 Computer Arithmetic 20.08.2014 15

2.2. Parallel column-wise addition of summands

 Consider example of multiplication of A and B

 a5 a4 a3 a2 a1 a0 A
 x b5 b4 b3 b2 b1 b0 B

 Using dot-notation, the summand matrix is following (consists of 36 summands):

10 9 8 7 6 5 4 3 2 1 0  bit position

       M1
       M2
       M3
       M4
       M5
      M6

 In the dot notation, the value of the summand is not shown, but the order (weight) is

highlighted

TIE-51106 Computer Arithmetic 20.08.2014 16

 M1, M2, …M6 can be added using e.g. six-input Wallace tree adder:

 Wallace tree
 The bits are combined at the earliest

opportunity
 Fastest possible implementation

 Dadda tree
 The bits are combined at the latest

opportunity
 The CSA levels are minimized
 The tree is much simpler than Wallace
 Speed is slower than with Wallace

CSA CSA

CSA

CSA

CSA

M3 M2 M1M6 M5 M4

CPA

TIE-51106 Computer Arithmetic 20.08.2014 17

 (3,2)-counters can be saved, if the original summand matrix is reorganized as follows:

10 9 8 7 6 5 4 3 2 1 0

          
         
       
     
   
 

 Columns are added up in 3 carry-save stages followed by CPA merging  4 levels of

adders

TIE-51106 Computer Arithmetic 20.08.2014 18

 Level 1 CSA addition:

10 9 8 7 6 5 4 3 2 1 0

          
          = (2,2)-counter
       
     
    = (3,2)-counter
 

 Results of level 1 CSA addition:

10 9 8 7 6 5 4 3 2 1 0

          
        
     
    = c,s

TIE-51106 Computer Arithmetic 20.08.2014 19

 Level 2 CSA addition:

10 9 8 7 6 5 4 3 2 1 0

          
        
     
   

 Level 3 CSA addition:

11 10 9 8 7 6 5 4 3 2 1 0

           
        
   

 After that, CPA (Carry Propagate Adder) is used to merge carry and sum bits (the

remaining two rows)

TIE-51106 Computer Arithmetic 20.08.2014 20

2.3. Combining techniques of sequential and parallel multipliers

 3 multiples addition / cycle

MiMi+1Mi+2

 First cycle: M3, M2, M1 added to partial product

 Second cycle: M6, M5, M4 added to partial product, etc

TIE-51106 Computer Arithmetic 20.08.2014 21

 EXAMPLE: parallel addition of 6 multiples into partial product

 6 multiples are generated e.g. out of

a) 12 multiplier bits in 2-bit non-overlapped scan
 -> each multiple may be 0,A,2A,3A

b) 13 multiplier bits in 2-bit look-ahead recoding
 -> each multiple may be 0,±2A, ±4A

c) 13 multiplier bits in 2-bit look-behind recoding
 -> each multiple may be 0, ±A, ±2A

d) 19 multiplier bits in 3-bit look-behind recoding
 -> each multiple may be 0, ±A, ±2A, ±3A, ±4A

e) 6 multiplier bits in 1-bit scanning

 -> each multiple may be 0,A

 CSA width must be changed if more bits are
scanned/recoded

 Amount of right shift depends on amount of
multiplier bits scanned in parallel

TIE-51106 Computer Arithmetic 20.08.2014 22

 Trade-off between complexity, speed and area

Sequential Combination Parallel

Basic
binary

Adder

Adder

 Next
multiple

Partial product

...

Several
multiples

Adder

. . .
All multiples

Small CSA
tree Full CSA

tree

High-radix
or

partial tree
Full
treeSpeed up Economize

Partial product

TIE-51106 Computer Arithmetic 20.08.2014 23

3. CELLULAR ARRAY MULTIPLIERS

 Main functional blocks
 Summand (aibj) generation unit
 Summand summation unit

 In actual implementations, the blocks are

merged

 Array multipliers are suitable for pipelining

 Typically best performance among
multipliers

 Reasonable implementations
 Unsigned
 Indirect 1’s complement and sign-

magnitude
 Direct 2’s complement multiplication

 Array multiplier performs column-wise

addition of summands

TIE-51106 Computer Arithmetic 20.08.2014 24

 Carry-out from each (whole) column can be generated partially and merged into the
next column

EXAMPLE

row col 3 2 1 0 col 4 3 3 2 2 1 1 0
1 1 0 1 1 0
2 0 1 1 2 0 1 1
3 0 1 1 0 0 1 0 0 1
4 0 0 1   
si 0 1 0 1 1 0 1
ci+1..i 0 0 10 0 3 0 1 1 0
 0 1 0 0 1 0 1
   
 1 0 1
 4 0 0 1
 0 1 0 0 1 0
        
 0 1 0 0 1 0 0 1
 c s c s c s c s

TIE-51106 Computer Arithmetic 20.08.2014 25

3.1 Braun multiplier
 Above merging is

directly applied in
Braun multiplier

 Suitable for

unsigned and SaM
numbers

TIE-51106 Computer Arithmetic 20.08.2014 26

3.2 Indirect cellular array signed number multiplication

 Operation
 Signed numbers are

converted to
unsigned

 Multiplication is
performed

 Result is converted if
needed

 Not reasonable for 2’s

complement numbers

TIE-51106 Computer Arithmetic 20.08.2014 27

3.3 Direct 2’s complement array multiplication

 Recall corrections required in general case

 For array multiplication, corrections can be included to carry and sum bits merging

during summand additions

 Based on 2’s complement number representation

1 2
01

n in
iv n iX x r x r 
   

 Negative operands causes negative summands

 MSB digit is considered negative

TIE-51106 Computer Arithmetic 20.08.2014 28

EXAMPLE

 Multiplication of

+13 and -5

 Each single
summand can be
negative or positive

 Negative
summands are
marked with ()

 In the last line of

summands, the
complement of A is
added:
corresponds to the
correction made in
“cumulating partial
products”
multiplication

TIE-51106 Computer Arithmetic 20.08.2014 29

 Previous example implies that addition of
summands requires also negatively
weighted inputs for adders

 Generalized full adder can be used for

additions

 Equations:

TIE-51106 Computer Arithmetic 20.08.2014 30

3.4 Pezaris multiplier

 Direct application of generalized full adders for direct 2’s complement array

multiplication leads to Pezaris multiplier

TIE-51106 Computer Arithmetic 20.08.2014 31

 Pezaris multiplier has one large section which contains three types of full adders

 Improvement can be made by rearranging the summand matrix elements (without
affecting column-wise additions)

 Tri-section multiplier has three different sections, each section uses only one type of

adder
 3 FA types required

 Bi-section multiplier uses only 2 types of FA
 First section adds all positive summands
 Second section adds all negative summands

TIE-51106 Computer Arithmetic 20.08.2014 32

TIE-51106 Computer Arithmetic 20.08.2014 33

3.5 Baugh-Wooley’s multiplier

 In all above
cases, direct
subtraction is
performed (not
addition of
complement)

 Only normal FA:s
can be used, if
summands are
arranged
according to two’s
complement
operation
 Baugh-

Wooley’s
multiplier

TIE-51106 Computer Arithmetic 20.08.2014 34

3.6 Recoded multiplier cellular array multiplication

 Partial product should

be accumulated or
subtracted depending
on recoded multiplier
bits

 For string of ones or

zeros, only shifting is
performed: unit should
also be able to shift
current row of
summands

 Implementation

requires controlled
add-subtract-shift
(CASS) cell

TIE-51106 Computer Arithmetic 20.08.2014 35

 3x3 recoded cellular array multiplier

TIE-51106 Computer Arithmetic 20.08.2014 36

4. MODULAR MULTIPLICATION

 Large multipliers can be constructed from smaller

EXAMPLE

Consider multiplication of A = 1234 and B = 5678 performing addition of several multiples
simultaneously (this is the same principle as in previous carry-save adder based
multipliers)

Multiplier sliced in two Multiplier sliced in four

TIE-51106 Computer Arithmetic 20.08.2014 37

EXAMPLE

Construct 2 2n n bit multiplier using n-bit multipliers

 Let 2 1 0,...,nA a a
 2 1 0,...,nB b b
 LA , LB be the least significant parts of operands (n-bits)
 HA , HB be the most significant parts of operands

 Then

 2

2

(2)(2)

2 2 2

2 ()2

n n
H L H L

n n n
H H H L L H L L

n n
H H H L L H L L

AB A A B B

A B A B A B A B

A B A B A B A B

  

   

   

TIE-51106 Computer Arithmetic 20.08.2014 38

 Block diagram

22 ()2n n
H H H L L H L LAB A B A B A B A B   

TIE-51106 Computer Arithmetic 20.08.2014 39

 Subproduct columns are added up for final result

 Max 3-input adders required for final stage and 4 multipliers to produce subproducts

 Each subproduct can be generated by some multiplier, e.g. cellular array multiplier

(Braun multiplier may be called Non-additive Multiplier Module NMM)

 2 2n n bit multiplier using 22 = 4 n-bit multipliers can be extended to any power of two

 kn kn bit multiplier uses 2k n-bit multipliers

 Partial products can be arranged as follows (Wallace)

TIE-51106 Computer Arithmetic 20.08.2014 40

TIE-51106 Computer Arithmetic 20.08.2014 41

5. LOOK-UP TABLE MULTIPLICATION

 Very fast, if large memory is available

 In multiplication, the table size grows quite rapidly with the width of the operands

EXAMPLE

 8x8 bit multiplier requires 64k x 16bit memory

 Practical multiplier implementation based on lookup table idea combines a number of

small tables and small adders

 Multiplicand and/or multiplier is split
 Lookup table is used to obtain the summands
 Tree of adders is used to add the summands

TIE-51106 Computer Arithmetic 20.08.2014 42

EXAMPLE

Consider multiplication of A = 1234 and B = 5678 (A and B sliced in two)

TIE-51106 Computer Arithmetic 20.08.2014 43

EXAMPLE

Implementation of 16x16 bit multiplier with four 8x8 bit look-up table multipliers and adders

MD = multiplicand
MR = multiplier

TIE-51106 Computer Arithmetic 20.08.2014 44

6. IMPLEMENTING MULTIPLICATION ON FPGA

 Two possibilities

 Use hard macros for multiplication
 Implement LUT-based multipliers

6.1 Hard macros for multiplication

 Many FPGA vendors incorporate special hard-wired multiplier blocks on FPGA

 Increase processing speed
 Reduce area

 Features of hard macros differ between FPGA vendors, vendor-specific examples of

hard macros for multiplication

 Xilinx: Embedded 18x18 bit signed multipliers
 Altera: Embedded DSP blocks
 Lattice: Booth multiplication logic

 Recommended to use

TIE-51106 Computer Arithmetic 20.08.2014 45

6.2 LUT-based multipliers

 LUT-based multipliers are inherently slow

 Large number of programmable logic blocks are connected together

 Sometimes LUT-based multiplication may still be needed

 Design incorporates more multipliers than FPGA provides
 Hard macro does not support the desired special multiplication

