Z
o

Topic

Number systems

Fixed point (FXP) addition: theory

FXP adders: basic implementations, speed-up techniques

SD number system

FXP multiplication: basics

FXP multiplication: speed-up techniques

FXP multiplication: implementations

FXP division: basics, speed-up techniques

©|l X N0 ~W NI

FXP division: speed-up techniques, implementations

o

Floating point numbers: basics

=

Floating point numbers: rounding

N

Arithmetic Optimization Techniques

TIE-51106 Computer Arithmetic 20.08.2014

MULTIPLIER IMPLEMENTATIONS

m Multiplication involves two operations

1. Generation of partial products
2. Accumulation of partial products

m Two ways to speed up multiplication

1. Reduce the number of partial products (previous lecture)
2. Accelerate accumulation of partial products (this lecture)

m Classification of high-speed multipliers

1. Sequential multipliers: generate the partial products sequentially and add each
newly generated product to the previously accumulated partial product

2. Parallel multipliers: generate all partial products in parallel and then use a fast multi-
operand adder for their accumulation

3. Cellular array multipliers: made up of an array of identical cells that generate new
partial products and accumulate them simultaneously, no separate circuits for partial
product generation and their accumulation

TIE-51106 Computer Arithmetic 20.08.2014 2

1.SEQUENTIAL MULTIPLIERS

1.1. Sequential multiplier for serial 1-bit scanning

_J J multiplier i :
multiplican%i Ll B P = Partial product and multiple of A are
el added up bit-serially
- each accumulation takes n cycles
"multipe selection” - multiplier bit is held unchanged
during this time
e ¥
delay ZX Full AdderL] PPH = MSBs of partial product
. 2 - PPL = LSBs of partial product
MSRENA ‘f——-)‘ PPH :I PPL P P

m Serial multiplication requires n* cycles for result
m Suitable for all number systems (Sam, 1's, 2's, unsigned)

m Simple implementation, low-cost

TIE-51106 Computer Arithmetic 20.08.2014 3

EXAMPLE Multiply A =101, =530 and B = 011 = 330 using serial multiplier

cycle A B Ci y Co PPH | PPL
1. 101 (011 |0 0 0 000 |---

100
2. 110 |011 |0 0 0

010
3. 011 /011 |0 0 0

101
Shift partial product 010 |1--
4. 101 101 |0 0 0

101
5. 110 101 |0 1 0

110
6. 011 |101 |O 0 0

111
Shift second partial product 011 |11-
7. 101 /110 |0 1 0

101
8. 110 |110 |0 1 0

110
9. 011 /110 |0 0 0

011
Shift last partial product 001 |111

TIE-51106 Computer Arithmetic 20.08.2014

multiplicand;l »_|

ﬂ B iﬂmultiplier
FF]

"multipe selection”

o]

Result: 001111, =154

1.2. Serial-parallel multiplier (1-bit scanning)
dy dg
b, by
a,by ay aghy
aby by aoby
ayh, &b, aob,
ah, ab+ab, aby+rab+agh, aby+alh, agh
Cycle | Stage | | Stage Il Stage Il b,
1 oy aohy ayhy 8.y, 2 —
2 by | aby+agh by +aghy
3 aby | aby+agb, | ab, +a.b, +agb,
4 0 a,h, a,b, +a,b, Stage |
5 0 0 a,b,

m Note: ab; is called a summand

TIE-51106 Computer Arithmetic 20.08.2014

FF

Stage li

FA

Stage Il

Po: P1: P2

—

FF

1.3 Sequential multiplier for parallel 1 —bit scanning

m Generic multiplier block diagram:

A B
multiplicand multiplier

multiple
select

]

adder

partial
product

-

TIE-51106 Computer Arithmetic 20.08.2014

m Basic implementation for right-shift method

TIE-51106 Computer Arithmetic 20.08.2014

Summands are generated parallel in each cycle
One cycle: add multiple of A into partial product

n cycles needed to complete operation

n+1 —bit adder required for intermediate overflows

:

multiplicand accumulator multiplier b
register (A) (AC register) register (B) °
v v
multiple select
(AND-gate)

adder

EXAMPLE

Reg AC |Reg B A =00101

p(0) 00000 | 01011

add A 00101

2 p(1) 00101 /01011

shift 0010|10101 omit 1
add A 00101

2 p(2) 00111 10101

shift 0011|11010 omit 1
add zero 00000

2 p(3) 0001111010

shift 0001|11101 omit O
add A 00101

2 I3(4) 0011011101

shift 0011 |01110 omit 1
add zero 00000

2 p(5) 00011 /01110

shift 0001|10111 omit O
Final result 00001 /10111

TIE-51106 Computer Arithmetic 20.08.2014

m Note how the multiplier bits are shifted out
and replaced by the LSB part of the partial
product (and final result)

m The example applies to unsigned numbers
multiplication: note the zeros shifted in to
the AC-register

m More complicated with signed numbers!

A 4

multiplicand accumulator multiplier
register (A) (AC register) register (B)

' _——

multiple select
(AND-gate)

v *—‘

adder

bo

1.4 Sequential multipliers for m —bit scanning and m —bit recoding

m Scanning and recoding differ in multiple count, type and shift length

m Both require
1. Multiple generation
2. Selection of proper multiple

3. Accumulation of partial product (= addition of multiple)

m Implementations differ in how above are arranged and / or combined

TIE-51106 Computer Arithmetic 20.08.2014

EXAMPLE

2-bit non-overlapping scanning (radix-4 multiplication)

m Multiples (0, A, 2A, and 3A) are
generated before operation Multiplier

m Depending on multiplier bits, AC ‘l
one of possible multiplies is
added into partial product per
cycle

2-bit shifts

3a
0O a 2a

00 01 10 11 ~2
/
Mux

TIE-51106 Computer Arithmetic 20.08.2014 10

EXAMPLE

2-bit non-overlapping scanning (radix-4 multiplication)

m Multiples (0, A, 2A, 3A)
m Generated on the fly
m Selected by multiplier bits

m Overflow / sign extension handled

as described earlier for 1's, 2's,
SaM numbers

TIE-51106 Computer Arithmetic 20.08.2014

i)

2A

multiplier
register (B)

b1bg

Wy

AND |AND

v v ¥

CSA
adder

=

CPA
adder

11

m One multiple is added in each cycle

M1 cyclel
\/ M2 e cycle 2
M3 e cycle 3

m Note: M1 =0, A, 2A or 3A depending on bh,
M2 =0, A, 2A or 3A depending on bsb,

m More than one multiple can be added during one cycle, because multiples can be
obtained independently

TIE-51106 Computer Arithmetic 20.08.2014

EXAMPLE
2-bit look-behind recoding

- —
L — l
l M1 cyclel
M2 e cycle 2
M3 e cycle 3
m One multiple is added in each cycle
M;

m More than one multiple can be added during one cycle, because multiples can be
obtained independently

TIE-51106 Computer Arithmetic 20.08.2014 13

2.PARALLEL MULTIPLIERS

2.1. Basic method

0101
0010
00000O0O
0001010
00000O0O0
0O0O0O0OO0O0O0
0001010 M4 (M3 M2 M1
4-input 8-bit
adder
|
P

m Note sign extension to multiples
m Adder will be large and wasteful because of sign extended bits

m For parallel addition in simpler hardware, summands may be added column-wise using
(m, n)-counters (CSA adders)

TIE-51106 Computer Arithmetic 20.08.2014 14

2.2. Parallel column-wise addition of summands
m Consider example of multiplication of A and B

ab a4 a3 a2 al a0 A
X b5 b4 b3 b2 bl b0 B

m Using dot-notation, the summand matrix is following (consists of 36 summands):
109 8 76 543210 < bit position

[] [] [] [] [] [] Ml

e e o o o o M2

e o6 o o o o MS

e o o o o o M4

e o o o o o M5

[] e o o o o M6

m |n the dot notation, the value of the summand is not shown, but the order (weight) is
highlighted

TIE-51106 Computer Arithmetic 20.08.2014 15

m M1, M2, ...M6 can be added using e.g. six-input Wallace tree adder:

MG M5 M4 M3 Mz M1 m Wallace tree
¢ ¢ ¢ ¢ ¢ ¢ = The bits are combined at the earliest
opportunity
CSA CSA

m Fastest possible implementation

m Dadda tree
¢ m The bits are combined at the latest

* opportunity

CSA m The CSA levels are minimized

m The tree is much simpler than Wallace

+ l l m Speed is slower than with Wallace

CSA
Y \ 4

CPA

v

TIE-51106 Computer Arithmetic 20.08.2014 16

m (3,2)-counters can be saved, if the original summand matrix is reorganized as follows:

109 8 7 6 543 210

m Columns are added up in 3 carry-save stages followed by CPA merging = 4 levels of
adders

TIE-51106 Computer Arithmetic 20.08.2014 17

m Level 1 CSA addition:

10 9 8 7 6 5

m Results of level 1 CSA addition:
10 9 8 7 6 5 4

TIE-51106 Computer Arithmetic 20.08.2014

C,S

= (2,2)-counter

= (3,2)-counter

18

m Level 2 CSA addition:

m Level 3 CSA addition:

m After that, CPA (Carry Propagate Adder) is used to merge carry and sum bits (the

remaining two rows)

TIE-51106 Computer Arithmetic 20.08.2014

10 9 8 7 3210
e & o o e 6 o o
e (6|0 | O ([] []
[] ([]
[]
11 10 9 8 7 3210

19

2.3. Combining techniques of sequential and parallel multipliers

m 3 multiples addition / cycle

Mirz Misp M

m First cycle: M3, M2, M1 added to partial product

m Second cycle: M6, M5, M4 added to partial product, etc

TIE-51106 Computer Arithmetic 20.08.2014

20

m EXAMPLE: parallel addition of 6 multiples into partial product

m 6 multiples are generated e.g. out of

Multiples ol
mulli_pliulnd
My, My M, M, My Mg a) 12 multiplier bits in 2-bit non-overlapped scan
Y Y [) I -> each multiple may be 0,A,2A,3A
| b) 13 multiplier bits in 2-bit look-ahead recoding
C5A CSA -> each multiple may be 0,£2A, +4A
c Is lc |s
c) 13 multiplier bits in 2-bit look-behind recoding
]] -> each multiple may be 0, £A, £2A
CSA CSA
lﬂ‘ ___ _l'-“' 3 d) 19 multiplier bits in 3-bit look-behind recoding
. -> each multiple may be 0, £A, £2A, £3A, £4A
{55‘"‘ = e) 6 multiplier bits in 1-bit scanning
lJ -> each multiple may be 0,A
T m CSA width must be changed if more bits are
Captiou: 3 & 13 scanned/recoded
By CXE
SR Shift Right m Amount of right shift depends on amount of
CaA “Cury—Sme 1 multiplier bits scanned in parallel
* To CPA

TIE-51106 Computer Arithmetic 20.08.2014 21

m Trade-off between complexity, speed and area

Sequential Combination Parallel
Several _
Next multiples All multiples

multiple | | l

\/ | \ aII CSA
Adder / tree Full CSA
tree
Partial |product Partial |product

Adder / \ Adder
|

Basic _>H|gho-rrad|x Full
binary Speed up partial tree Economize tree

TIE-51106 Computer Arithmetic 20.08.2014 22

3.CELLULAR ARRAY MULTIPLIERS

The Multiplicand rThe Multiplierrm
. . /\ /\
m Main functional blocks L. e Y b -B
. . m—1 e e e 4 a n-1 o e o Uy (I
m Summand (ab;) generation unit Y Y Y Y
m Summand summation unit -__.__-.__T.___ ————f—-
L N B —l =
m In actual implementations, the blocks are , | Summane
merged LJ ceeenn | Unit
|
|
m Array multipliers are suitable for pipelining b= -
= Typically best performance among ceen
multipliers met bao “bo
Y Y
m Reasonable implementations
m Unsigned | mX n Summand
= Indirect 1's complement and sign- il ot Gammation
magnitude
m Direct 2's complement multiplication
L Arrqy multiplier performs column-wise oo P’L_‘ . B ,l,o
addition of summands . y

\ 4
The Product

TIE-51106 Computer Arithmetic 20.08.2014 23

m Carry-out from each (whole) column can be generated partially and merged into the

next column
EXAMPLE
row |(col |3 2 1 0 col 4 3 3 2 2 1 1 0)
1 1 0 1 1 0
2 0 1 1 2 0 1 1
3 0) 1 1 0 0 1 0 0 1
4 0 0 1 N7 N2 N7
Si 0 1 0 1 1 0 1
Ci+1..i 0 0 10 |0 3 0 1 1 0
0 1 0 0 1 0 1
24 N N
1 0 1
4 0 0 1
0 1 0 0 1 0
N7 N7 N7 N7 N7 N2 N2
0 1 0 0 1 0 0
C S C S C S C

TIE-51106 Computer Arithmetic 20.08.2014 24

3.1 Braun multiplier
a4bo ab, azby aybo %t ® Above merging is
0 0 0 0 directly applied in

» “s"’:"zb“‘lbl Fa YO Braun multiplier
4“1

m Suitable for

° @ ° ~ b unsigned and SaM
b2 P numbers

BRAUN MUCTIPLIER

=1 =
i
| 03
{
L

NS I i ———

| [

N T N R T N N S S
Fy L Py Fs 13 By Py By Py Fy

+ Figure 6.3 The schematic circuit diagram of a 5-by-5 unsigned array multiplier (Braun [5]).
TIE-51106 Computer Arithmetic 20.08.2014 25

3.2 Indirect cellular array signed number multiplication

m Operation

m Signed numbers are
converted to
unsigned

m Multiplication is
performed

m Result is converted if
needed

m Not reasonable for 2's
complement numbers

TIE-51106 Computer Arithmetic 20.08.2014

(The Multiplicand)

A=a,_ 1400 a 4

(The Multiplier)

b'_.jooo b1 b0=B

n — Bit
Precomplementer

n — Bit
Precomplementer

. lll

n —by —n Unsigned

Multiplication Array
(The Core)

2n — Bit
Postcomplementer

P=r, Py 1 eccceces 1) Py (The Product)

26

3.3 Direct 2's complement array multiplication
m Recall corrections required in general case

m For array multiplication, corrections can be included to carry and sum bits merging
during summand additions

m Based on 2’'s complement number representation
X, ==X "+ 302 xr
m Negative operands causes negative summands

m MSB digit is considered negative

TIE-51106 Computer Arithmetic 20.08.2014 27

EXAMPLE
aq) as a, a; Qo = A

m Multiplication of x) (b by by by by =B

+13 and -5 (aebo) asby a by ayby agb
(aeby) azby aby ab; agb,
[| EaCh Single (agby) azb, ab, ab, ayb,

(acb3) azb; a b aby agb,

summand can be +) asb. (ashey) (azbs) (aibe) (aohs)

negative or positive

m Negative ;
summands are o (1) 0.l
marked with ()) @ _

© 1101
= In the last line of) @ oY
© 0 0
summands, the © 1 1 0 1
complement of A is +) 0 (1) (1) © @
added:
corresponds to the o @® o 1 1 1 11
correction made in o o bt e
) : _ Extended 1
cumulating partial Sign Sign

products”
multiplication

TIE-51106 Computer Arithmetic 20.08.2014

m Previous example implies that addition of

i i ic Symbol Operati
summands requires also negatively Type Logic Sym peration

weighted inputs for adders

. Type O
m Generalized full adder can be used for Full

additions Adder

0:
“iN <

m Equations:

Type 1 (S =XYZ + XYZ + XYZ + XYZ

or 1 TVF‘”"2 Ty
Type 2|C = XY + XZ + YZ Adder + 2

-C) s

X
Y
0 z
s
X
Y X
. - — = e Type 1 vy
TypeO SZXYZ+XYZ+XYZ+XYZ Full 4 4z
or { Adder . b,
Type3{C=XY +YZ+ZX s
X
: Y
z
C .
s
x .

Y
-X
Type 3 -y
Full z +) -2
Adder c 0 (=5)

TIE-51106 Computer Arithmetic 20.08.2014 29

3.4 Pezaris multiplier

m Direct application of generalized full adders for direct 2's complement array
multiplication leads to Pezaris multiplier

Figure 6.10 The schematic circuit diagram of a 5-by-5 Pezaris array multiplier.

TIE-51106 Computer Arithmetic 20.08.2014

30

m Pezaris multiplier has one large section which contains three types of full adders

m Improvement can be made by rearranging the summand matrix elements (without
affecting column-wise additions)

m Tri-section multiplier has three different sections, each section uses only one type of
adder
m 3 FA types required

m Bi-section multiplier uses only 2 types of FA

m First section adds all positive summands
m Second section adds all negative summands

TIE-51106 Computer Arithmetic 20.08.2014 31

Bl- section (as) as a; a, a =A
x) (b b, b, b, by =

a3b0 azbo albo aobo
azb; azb, ajby agb,

Positive section | asb, ab, ab, ayb,
a4b4 0 a3b3 azb3 alb3 a0b3
(@cbs) (asbs) (asby) “(asbo) | } Negative
(asby) (azby) (a;by) (agby) section
(Pg) Py P, P Py P, P, P, P, Py = P

P=AxB
A, B, and P are all ncgativcly signed tow's complement numbers.

Figure 6.12 The segregation of positive and negative summands in a 5-by-5 bisection array multiplier

for two’s complement numbers.

TIE-51106 Computer Arithmetic 20.08.2014 32

3.5 Baugh-Wooley’s multiplier

a; b, a, bj
m |n all above
cases, direct . a; bj Fari, j=0,1,2 3and(,j) = (4, 4)
subtraction is 0=i<3 0<j=3
performed (not
additlon Of 4450 “3bo a2bo d, bO aObD
complement) Tb a.b ab; o °. Ob Ob
“31@421 RLTEINWL
. a, b, 3 a4;1 @ @
m Only normal FA:s A ~ .
can be used, if 2obs
’ -~ FA
summands are .5, @ @ @
arranged Y Y N
- [{
accordingtotwo's " (r)e (ra)E R (ra)d raje
a —
complement w0
operation asbs : Zoba
> Baugh- O OO OO
Wooley’s ay
multiplier OBOBONOBOENONS
 / Y Y 4
A Py) Py j P, P, P, P, P,

Figure 6.17 The schematic logic circuit diagram of a 5-by-5 Baugh—Wooley two’s complement array

TIE-51106 Computer Arithmetic 20.08.2014 33

3.6 Recoded multiplier cellular array multiplication

i Inputs from previous level

m Partial product should

be accumulated or , 0
. D
subtracted depending ’ c
on recoded multiplier
bits ! Y
i d
) . Operand input
m For string of ones or \Opera"d input
zeros, only shifting is i [-i
performed: unit should P=0:Shift P—= . > ==
also be able to shift . [:
current row of D=0:add 5— S— S
summands D = 1: subtract { { _{ :
i ™ 1 f
. i - -
[_} - Carry /borrow in
Impl_ementatlon Carry/borrow out 7 <L J T ry/
requires controlled : /| & ;
add-subtract-shift] J L _\i\
(CASS) cell [sumout X,
£
Figure 6.28 A schematic logic circuit diagram of the Controlled Add-Subtract-
Shift (CASS) cell.

TIE-51106 Computer Arithmetic 20.08.2014 34

m 3x3 recoded cellular array multiplier

Multiplicand Y

.—p—+
0 o 0 0
X Multiplier Subtract to lo lo
———>-| CASS f——a{ CASS ——1-‘-,- CASS
. - % e e L —
— Jf l l V
’7 DG = — -
2 =01 cass —2a cass f—2a cAss = CASS
| ‘1\ 1 1
Sub:;tra}c’:'c=1 0 Y1 1 0 V1 1 0 Vi 1 0 V1 1 : #0
Y do=1 1) 1> 1
/D- LS CASS j———=n{ CASS —0—9— CASS --O—e- CASS —09- CASS
1 — bit
comparators
Binary
Point
; I
1 1 1 0 1
XY

(2’s complement)

TIE-51106 Computer Arithmetic 20.08.2014

35

4. MODULAR MULTIPLICATION

m Large multipliers can be constructed from smaller

EXAMPLE

Consider multiplication of A = 1234 and B = 5678 performing addition of several multiples

simultaneously (this is the same principle as in previous carry-save adder based
multipliers)

Multiplier sliced in two Multiplier sliced in four
1234 1234 1234 1234 1234 1234
x 56 X 78

6170 8638 6170 7404 8638 9872

7404 9872 \\\‘ ///’ \\\\ ///’
69104 96252
8
+

170 8638
\\\\ /// 7404 +9872
69104 96252
+96252 \\\\\\‘ ’////
7006652
69104
+96252
7006652

TIE-51106 Computer Arithmetic 20.08.2014 36

EXAMPLE

Construct 2N x 2N bit multiplier using n-bit multipliers

Let A= azn_l,..., a.o
B = bzn_l,..., bo
A , B| be the least significant parts of operands (n-bits)
AH : BH be the most significant parts of operands

Then
AB =(A,2"+A)(By2"+B)

= A,B, 2"+ A B 2"+ A B,2"+AB,
= AyBy 2"+ (AyBL + A B,)2" + A B

TIE-51106 Computer Arithmetic 20.08.2014

37

m Block diagram

TIE-51106 Computer Arithmetic 20.08.2014

AB=A,B,2°"+(A,B, + A B,)2" + A B,

(a)

(b)

t

An | A
Gl
A;p X B
Ay x B
AL x By
Ay x By
Ag X BL
Ay x By 1 AL x B,
Ar x By

Basic
arrangement
of partial
products

More
convenient
arrangement
of partial
products

38

m Subproduct columns are added up for final result
m Max 3-input adders required for final stage and 4 multipliers to produce subproducts

m Each subproduct can be generated by some multiplier, e.g. cellular array multiplier
(Braun multiplier may be called Non-additive Multiplier Module NMM)

m 2nx2n bit multiplier using 2 = 4 n-bit multipliers can be extended to any power of two

= knxkn bit multiplier uses k? n-bit multipliers

m Partial products can be arranged as follows (Wallace)

TIE-51106 Computer Arithmetic 20.08.2014 39

i—input Wallace trees

W; means 4 each

/16 X 16

Caption:

© o

© - ®

x Xh x

© e >

$30nposd |euyd oun i 22 ¢
R
, o £
wealnl gl X £

32 X 32

L3 3

ey |——————- - —

x B

IIW”I..IIWm-

e e ——

-y

which produces]

a4 X 4 NMM
an 8-bit subproduct

Each rectangle is

- S . —— ——y — ————— V— — G—— —— > =

$9npoud |RULd 002 19T 7ol 9l

40

Final product outputs

Figure 6.7 Array arrangement for various multipliers from size 4-by-4 to 32-by-32.

TIE-51106 Computer Arithmetic 20.08.2014

5.LOOK-UP TABLE MULTIPLICATION
m Very fast, if large memory is available
m |In multiplication, the table size grows quite rapidly with the width of the operands
EXAMPLE
8x8 bit multiplier requires 64k x 16bit memory

m Practical multiplier implementation based on lookup table idea combines a number of
small tables and small adders

m Multiplicand and/or multiplier is split

m Lookup table is used to obtain the summands
m Tree of adders is used to add the summands

TIE-51106 Computer Arithmetic 20.08.2014 41

EXAMPLE

Consider multiplication of A = 1234 and B = 5678 (A and B sliced in two)

12 34 12 34
X 56 X 56 x1§ X 78
60 170 84 238

7 204 9 272
6 36 @jj}Z

+190 +2652
69104 96252
691014
4+96252

7006652

TIE-51106 Computer Arithmetic 20.08.2014

42

EXAMPLE
Implementation of 16x16 bit multiplier with four 8x8 bit look-up table multipliers and adders

MDg 15 MRg;s MD,, MRg.s MDg_ss MR,._7 MD,_; MR,_, MD = mUItiplicand

J, J, l l l l l l MR = multiplier

64k x 16-bit 64k x16-bit 64k x 16-bit 64k x 16-bit

table table table table
A 16 A 16
A7 16 A716
A8 A8 A 8 A8
16-bit adder 16-bit adder
A 16 416
A 24

24-bit adder

! !

Bits 8-31 Bits 0-7
of of
product product

TIE-51106 Computer Arithmetic 20.08.2014 43

6.IMPLEMENTING MULTIPLICATION ON FPGA
m Two possibilities

m Use hard macros for multiplication
m Implement LUT-based multipliers

6.1 Hard macros for multiplication
m Many FPGA vendors incorporate special hard-wired multiplier blocks on FPGA

m Increase processing speed
m Reduce area

m Features of hard macros differ between FPGA vendors, vendor-specific examples of
hard macros for multiplication

m Xilinx: Embedded 18x18 bit signed multipliers
m Altera: Embedded DSP blocks
m Lattice: Booth multiplication logic

m Recommended to use

TIE-51106 Computer Arithmetic 20.08.2014 44

6.2 LUT-based multipliers
m LUT-based multipliers are inherently slow

m Large number of programmable logic blocks are connected together
m Sometimes LUT-based multiplication may still be needed

m Design incorporates more multipliers than FPGA provides
m Hard macro does not support the desired special multiplication

TIE-51106 Computer Arithmetic 20.08.2014

45

