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No Topic 

1. Number systems 
2. Fixed point (FXP) addition: theory 
3. FXP adders:  basic implementations, speed-up techniques  
4. SD number system 
5. FXP multiplication: basics 
6. FXP multiplication: speed-up techniques 
7. FXP multiplication: implementations 
8. FXP division: basics, speed-up techniques 

9. FXP division: speed-up techniques, implementations 

10. Floating point numbers: basics 
11. Floating point numbers: rounding  

12. Arithmetic Optimization Techniques 
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MULTIPLIER IMPLEMENTATIONS 
 
 Multiplication involves two operations 

 
1. Generation of partial products  
2. Accumulation of partial products 

 
 Two ways to speed up multiplication 

 
1. Reduce the number of partial products (previous lecture) 
2. Accelerate accumulation of partial products (this lecture) 
 

 Classification of high-speed multipliers 
 
1. Sequential multipliers: generate the partial products sequentially and add each 

newly generated product to the previously accumulated partial product 
2. Parallel multipliers: generate all partial products in parallel and then use a fast multi-

operand adder for their accumulation 
3. Cellular array multipliers: made up of an array of identical cells that generate new 

partial products and accumulate them simultaneously, no separate circuits for partial 
product generation and their accumulation 
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1. SEQUENTIAL MULTIPLIERS 
 

1.1. Sequential multiplier for serial 1-bit scanning 
 

 
 

 
 Partial product and multiple of A are 

added up bit-serially 
     each accumulation takes n cycles 
     multiplier bit is held unchanged   
         during this time 
 
PPH = MSBs of partial product 
PPL = LSBs of partial product 
 
 

 
 Serial multiplication requires n2 cycles for result 
 
 Suitable for all number systems (Sam, 1’s, 2’s, unsigned) 
 
 Simple implementation, low-cost 
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EXAMPLE Multiply A = 1012 = 510 and B = 011 = 310 using serial multiplier 
 
cycle A B ci X y co s PPH PPL  

 
 
 
 
 
 

 
 
 
 
 
 
 
Result: 0011112 = 1510 

1. 101 011 0 1 0 0 1 000 --- 
        100  
2. 110 011 0 0 0 0 0   
        010  
3. 011 011 0 1 0 0 1   
        101  
Shift partial product  010 1-- 
4. 101 101 0 1 0 0 1   
        101  
5. 110 101 0 0 1 0 1   
        110  
6. 011 101 0 1 0 0 1   
        111  
Shift second partial product  011 11- 
7. 101 110 0 0 1 0 1   
        101  
8. 110 110 0 0 1 0 1   
        110  
9. 011 110 0 0 0 0 0   
        011  
Shift last partial product  001 111 
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1.2. Serial-parallel multiplier (1-bit scanning) 
 

  2a  1a  0a  
  2b  1b  0b  
  2 0a b  1 0a b  0 0a b  
 2 1a b  1 1a b  0 1a b   

2 2a b  1 2a b  0 2a b    

2 2a b  2 1a b + 1 2a b  2 0a b + 1 1a b + 0 2a b 1 0a b + 0 1a b 0 0a b  
 

Cycle Stage I Stage II Stage III 

 

1 0 0a b  0 0a b  0 0a b  
2 1 0a b  1 0a b + 0 1a b 1 0 0 1a b a b  
3 2 0a b  2 0a b + 1 1a b 2 0 1 1 0 2a b a b a b 
4 0 2 1a b  2 1 1 2a b a b  
5 0 0 2 2a b  

 
 Note: aibj is called a summand  
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1.3 Sequential multiplier for parallel 1 –bit scanning 
 
 Generic multiplier block diagram: 
 

B
multiplier

A
multiplicand

multiple
select

adder

partial
product
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 Basic implementation for right-shift method 
 

 Summands are generated parallel in each cycle 
 One cycle: add multiple of A into partial product 
 n cycles needed to complete operation 
 n+1 –bit adder required for intermediate overflows 

 

 
  

adder

multiplier
register (B)

accumulator
(AC register)

multiplicand
register (A)

multiple select
(AND-gate)

b0
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EXAMPLE 
 Reg AC Reg B A = 00101  Note how the multiplier bits are shifted out 

and replaced by the LSB part of the partial 
product (and final result) 

 
 The example applies to unsigned numbers 

multiplication: note the zeros shifted in to 
the AC-register 

 
 More complicated with signed numbers! 

 
 

 

(0)p  00000 01011  
add A 00101   
2 (1)p  00101 01011  
shift 00010 10101  1 omit 1 
add A 00101   
2 (2)p  00111 10101  
shift 00011 11010  1 omit 1 
add zero 00000   
2 (3)p  00011 11010  
shift 00001 11101  0 omit 0 
add A 00101   
2 (4)p  00110 11101  
shift 00011 01110  1 omit 1 
add zero 00000   
2 (5)p  00011 01110  
shift 00001 10111  0 omit 0 
    

Final result 00001 10111  

adder

multiplier
register (B)

accumulator
(AC register)

multiplicand
register (A)

multiple select
(AND-gate)

b0
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1.4 Sequential multipliers for m –bit scanning and m –bit recoding 
 
 Scanning and recoding differ in multiple count, type and shift length 
 
 Both require   

1. Multiple generation 
2. Selection of proper multiple 
3. Accumulation of partial product (= addition of multiple) 

 
 Implementations differ in how above are arranged and / or combined 
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EXAMPLE  
  
2-bit non-overlapping scanning (radix-4 multiplication) 
 
 Multiples (0, A, 2A, and 3A) are 

generated before operation 
 
 Depending on multiplier bits, 

one of possible multiplies is 
added into partial product per 
cycle 

 
 

 

 

0a 2a
3a

AC
Multiplier

2-bit shifts

00    01    10    11
Mux

a
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EXAMPLE 
 
2-bit non-overlapping scanning (radix-4 multiplication) 
 
 
 Multiples (0, A, 2A, 3A)  
 Generated on the fly 
 Selected by multiplier bits 
 

 Overflow / sign extension handled 
as described earlier for 1’s, 2’s, 
SaM numbers 

 
 
 

CSA
adder

multiplier
register (B)2A

A

b1b0

CPA
adder

AND AND
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 One multiple is added in each cycle 
 

cycle 1
cycle 2
cycle 3

b0b1b2b3b4b5. . .

. . .
M1

M2
M3  

 
 Note:  M1 = 0, A, 2A or 3A depending on 1 0b b  

  M2 = 0, A, 2A or 3A depending on 3 2b b  
 

 More than one multiple can be added during one cycle, because multiples can be 
obtained independently 
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EXAMPLE 
  2-bit look-behind recoding 

b-1=0b0b1b2b3b4b5. . .

. . .

cycle 1
cycle 2
cycle 3

M1
M2

M3  
 One multiple is added in each cycle 

Mi

 
 

 More than one multiple can be added during one cycle, because multiples can be 
obtained independently  
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2. PARALLEL MULTIPLIERS 
  

2.1. Basic method 
 
   0 1 0 1  
   0 0 1 0  

0 0 0 0 0 0 0  
0 0 0 1 0 1 0   
0 0 0 0 0 0 0    
0 0 0 0 0 0 0    
0 0 0 1 0 1 0  M4 M3 M2 M1 
            
        4-input 8-bit 

adder 
 

  
          p 
 Note sign extension to multiples 
 
 Adder will be large and wasteful because of sign extended bits 
 
 For parallel addition in simpler hardware, summands may be added column-wise using 

(m, n)-counters (CSA adders) 
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2.2. Parallel column-wise addition of summands 
 
 Consider example of multiplication of A and B 
 
  a5  a4  a3  a2  a1  a0  A 
     x b5  b4  b3  b2  b1  b0  B 
 
 Using dot-notation, the summand matrix is following (consists of 36 summands): 
 

10 9 8 7 6 5 4 3 2 1 0   bit position 

            M1 
            M2 
            M3 
            M4 
            M5 
            M6 

  
 In the dot notation, the value of the summand is not shown, but the order (weight) is 

highlighted  
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 M1, M2, …M6 can be added using e.g. six-input Wallace tree adder: 
 

 
 Wallace tree  
 The bits are combined at the earliest 

opportunity  
 Fastest possible implementation 

 
 Dadda tree 
 The bits are combined at the latest 

opportunity 
 The CSA levels are minimized 
 The tree is much simpler than Wallace 
 Speed is slower than with Wallace 

 

 

CSA CSA

CSA

CSA

CSA

M3 M2 M1M6 M5 M4

CPA
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 (3,2)-counters can be saved, if the original summand matrix is reorganized as follows: 
 

10 9 8 7 6 5 4 3 2 1 0

          
           
           
           
           
           

  
 Columns are added up in 3 carry-save stages followed by CPA merging    4 levels of 

adders 



TIE-51106 Computer Arithmetic 20.08.2014                   18  

 

 Level 1 CSA addition: 
 

10 9 8 7 6 5 4 3 2 1 0    

              
             = (2,2)-counter 
              
              
           = (3,2)-counter 
              

 
 Results of level 1 CSA addition: 
 

10 9 8 7 6 5 4 3 2 1 0    

              
              
              
           = c,s 
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 Level 2 CSA addition: 
 

10 9 8 7 6 5 4 3 2 1 0

          
           
           
           
           
           

 
 Level 3 CSA addition: 

11 10 9 8 7 6 5 4 3 2 1 0

           
            
            
            
            
            

 
 After that, CPA (Carry Propagate Adder) is used to merge carry and sum bits (the 

remaining two rows)   
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2.3. Combining techniques of sequential and parallel multipliers 
 
 3 multiples addition / cycle 

MiMi+1Mi+2

 
 
 First cycle:  M3, M2, M1 added to partial product 
 
 Second cycle:  M6, M5, M4 added to partial product, etc  
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 EXAMPLE: parallel addition of 6 multiples into partial product 
 

 6 multiples are generated e.g. out of 
 
a) 12 multiplier bits in 2-bit non-overlapped scan 
     -> each multiple may be 0,A,2A,3A 
 
b) 13 multiplier bits in 2-bit look-ahead recoding 
     -> each multiple may be 0,±2A, ±4A 
 
c) 13 multiplier bits in 2-bit look-behind recoding 
     -> each multiple may be 0, ±A, ±2A 
 
d) 19 multiplier bits in 3-bit look-behind recoding 
     -> each multiple may be 0, ±A, ±2A, ±3A, ±4A 
 
e) 6 multiplier bits in 1-bit scanning 

            -> each multiple may be 0,A 
 

 CSA width must be changed if more bits are 
scanned/recoded 
 

 Amount of right shift depends on amount of 
multiplier bits scanned in parallel 
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 Trade-off between complexity, speed and area 
 

Sequential    Combination   Parallel 
 

Basic 
binary

Adder

Adder

  Next
multiple

Partial  product

...

Several
multiples

Adder

. . .
All multiples

Small CSA
tree Full CSA

tree

High-radix
or

partial tree
Full
treeSpeed up Economize

Partial product
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3. CELLULAR ARRAY MULTIPLIERS 
 
 Main functional blocks 
 Summand (aibj) generation unit 
 Summand summation unit 

 
 In actual implementations, the blocks are 

merged 
 
 Array multipliers are suitable for pipelining

 Typically best performance among 
multipliers 

 
 Reasonable implementations 
 Unsigned 
 Indirect 1’s complement and sign-

magnitude 
 Direct 2’s complement multiplication  

 
 Array multiplier performs column-wise 

addition of summands 
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 Carry-out from each (whole) column can be generated partially and merged into the 
next column 

 
EXAMPLE 
 

row col 3 2 1 0 col 4 3 3 2 2 1 1 0 
1    1 0 1      1  0 
2   0 1 1 2    0  1  1 
3  0 1 1 0     0 1 0 0 1 
4  0 0 1           
si  0 1 0 1     1  0  1 
ci+1..i  0 0 10 0 3  0  1  1  0 
        0 1 0 0 1 0 1 
               
        1  0  1   
      4  0  0  1   
       0 1 0 0 1 0   
               
       0 1 0 0 1 0 0 1 
       c s c s c s c s 
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3.1 Braun multiplier 
 Above merging is 

directly applied in 
Braun multiplier 

 
 Suitable for 

unsigned and SaM 
numbers 
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3.2 Indirect cellular array signed number multiplication 
 
 Operation 
 Signed numbers are 

converted to 
unsigned  

 Multiplication is 
performed 

 Result is converted if 
needed 

 
 Not reasonable for 2’s 

complement numbers 
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3.3 Direct 2’s complement array multiplication 
 
 Recall corrections required in general case 
 
 For array multiplication, corrections can be included to carry and sum bits merging 

during summand additions 
 
 Based on 2’s complement number representation 
 

1 2
01

n in
iv n iX x r x r 
     

 
 Negative operands causes negative summands 
 
 MSB digit is considered negative 
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EXAMPLE 
 
 Multiplication of 

+13 and -5 
 

 Each single 
summand can be 
negative or positive  
 

 Negative 
summands are 
marked with () 

 
 In the last line of 

summands, the 
complement of A is 
added: 
corresponds to the 
correction made in 
“cumulating partial 
products” 
multiplication 
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 Previous example implies that addition of 
summands requires also negatively 
weighted inputs for adders 

 
 Generalized full adder can be used for 

additions 
 
 Equations: 
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3.4 Pezaris multiplier 
 
 Direct application of generalized full adders for direct 2’s complement array 

multiplication leads to Pezaris multiplier 
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 Pezaris multiplier has one large section which contains three types of full adders  
 

 Improvement can be made by rearranging the summand matrix elements (without 
affecting column-wise additions) 

 
 Tri-section multiplier has three different sections, each section uses only one type of 

adder 
 3 FA types required 

 
 Bi-section multiplier uses only 2 types of FA 
 First section adds all positive summands 
 Second section adds all negative summands 
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3.5 Baugh-Wooley’s multiplier 
 

 In all above 
cases, direct 
subtraction is 
performed (not 
addition of 
complement) 
 

 Only normal FA:s 
can be used, if 
summands are 
arranged 
according to two’s 
complement 
operation 
 Baugh-

Wooley’s 
multiplier 
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3.6  Recoded multiplier cellular array multiplication 
 
 Partial product should 

be accumulated or 
subtracted depending 
on recoded multiplier 
bits 

 
 For string of ones or 

zeros, only shifting is 
performed: unit should 
also be able to shift 
current row of 
summands 

 
 Implementation 

requires controlled 
add-subtract-shift 
(CASS) cell  
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 3x3 recoded cellular array multiplier 
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4. MODULAR MULTIPLICATION 
 
 Large multipliers can be constructed from smaller 
 
EXAMPLE 
 
Consider multiplication of A = 1234 and B = 5678 performing addition of several multiples 
simultaneously (this is the same principle as in previous carry-save adder based 
multipliers)  
 

Multiplier sliced in two Multiplier sliced in four 
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EXAMPLE 
  
Construct 2 2n n  bit multiplier using n-bit multipliers 
 
 Let 2 1 0,...,nA a a   
  2 1 0,...,nB b b  
  LA , LB be the least significant parts of operands (n-bits) 
  HA , HB  be the most significant parts of operands 
 
 Then 

  2

2

( 2 )( 2 )

2 2 2

2 ( )2

n n
H L H L

n n n
H H H L L H L L

n n
H H H L L H L L

AB A A B B

A B A B A B A B

A B A B A B A B

  

   

   
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 Block diagram 
 

22 ( )2n n
H H H L L H L LAB A B A B A B A B   
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 Subproduct columns are added up for final result 
 
 Max 3-input adders required for final stage and  4 multipliers to produce subproducts 
 
 Each subproduct can be generated by some multiplier, e.g. cellular array multiplier 

(Braun multiplier may be called Non-additive Multiplier Module NMM) 
 
 2 2n n  bit multiplier using 22 = 4 n-bit multipliers can be extended to any power of two 
 
 kn kn  bit multiplier uses 2k  n-bit multipliers 
 
 Partial products can be arranged as follows (Wallace) 
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5. LOOK-UP TABLE MULTIPLICATION 
 
 Very fast, if large memory is available 
 
 In multiplication, the table size grows quite rapidly with the width of the operands 
 
EXAMPLE 
  
  8x8 bit multiplier requires 64k x 16bit memory 
 
 Practical multiplier implementation based on lookup table idea combines a number of 

small tables and small adders 
 
 Multiplicand and/or multiplier is split 
 Lookup table is used to obtain the summands 
 Tree of adders is used to add the summands 
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EXAMPLE 
 
Consider multiplication of A = 1234 and B = 5678 (A and B sliced in two) 
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EXAMPLE 
 
Implementation of 16x16 bit multiplier with four 8x8 bit look-up table multipliers and adders  
 

MD = multiplicand 
MR = multiplier 
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6. IMPLEMENTING MULTIPLICATION ON FPGA  
 
 Two possibilities 

 
 Use hard macros for multiplication 
 Implement LUT-based multipliers 

 
6.1 Hard macros for multiplication 

 
 Many FPGA vendors incorporate special hard-wired multiplier blocks on FPGA 

 
 Increase processing speed 
 Reduce area 

 
 Features of hard macros differ between FPGA vendors, vendor-specific examples of 

hard macros for multiplication 
 

 Xilinx: Embedded 18x18 bit signed multipliers 
 Altera: Embedded DSP blocks 
 Lattice: Booth multiplication logic 

 
 Recommended to use 
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6.2 LUT-based multipliers 
 
 LUT-based multipliers are inherently slow 

 
 Large number of programmable logic blocks are connected together 

 
 Sometimes LUT-based multiplication may still be needed 
 
 Design incorporates more multipliers than FPGA provides 
 Hard macro does not support the desired special multiplication 

 


