
Impact of GCC optimization levels in energy

consumption during C/C++ program execution

David Branco

Universidade do Minho, Portugal

davidbranco88@gmail.com

Pedro Rangel Henriques

Universidade do Minho, Portugal

pedrorangelhenriques@gmail.com

Abstract—In the context of a research project aimed at
studying patterns for energy consumption at runtime in order
to transform the original software into executable programs that
consume less energy, we are carrying out a master’s thesis looking
for ways to get this improvement at the code generation phase.
First we investigated how the hardware manufacturers have been
and are concerned with green issues, aiming to find whether the
modern processors are delivered with instruction sets that express
the energy required to execute each operation, and whether they
include code alternatives cheaper in terms of electric energy. In
this paper we intend to describe a second step in this project. We
will analyze the influence of GCC optimizations on the energy
consumed by a program. We will compare the consumption of
a given program compiled without any optimization with other
versions of the same program compiled with different levels of
optimization. The experiment conducted has shown that actually
options -Ofast and -O3 generate a faster code that decreases
the energy consumed. We report in the paper the study carried
on, presenting the experimental setup and the method followed
to measure and compare the resources consumed by a program
during execution, and then we discuss the results obtained.

I. INTRODUCTION

Currently we live in a period in which technology evolves
very quickly and the number of those who use it, causing the
associated energy consumption, reaches very high values in
financial and environmental terms. So with a strong concern
and an increasing need to reduce energy consumption in all
the information and communication infrastructures (ICTs),
emerged Green Computing which aims precisely at computers
and related resources more efficiently while maintaining or
increasing overall performance [1][2].

Being microprocessors - or commonly, the CPUs or just
processors - the heart and brain of any computer (and of a huge
number of devices used on a daily basis), naturally they are one
of the components with great impact on energy consumption.
According to the information from Intel Labs in 2008 the
processors are even the largest consumers of energy inside
servers with values between 45W to 200W per multi-core CPU
(depending on the type of server and workload) [3][4]. They
had a very important role in world’s development and will
continue to affect the life at several levels of their population.
For all those reasons, the optimization of aspects related with
microprocessors is a crucial way to combat excessive energetic
consumption of IT industry.

The code optimizations performed by a compiler are a
great way to get more performance without modifying any
hardware or software component. With a just a few adjustments
in the compilation arguments and these improvements are

obtained immediately. While this approach has mainly the aim
of reducing the execution time or required space by a program,
in this article we will also see the potential that may have in
reducing energy consumption [5][6].

In this paper, we address the energy impact that running
optimized compiled code has in the energy consumption of the
CPU. In particular, the study of C/C++ programs compiled
by GCC with optimization flags for a target machine based
on an Intel CPU. Although the CPU is the most important
computational resource of this study it was also examined
the impact in memory and GPU in order to perform a more
complete analysis.

The study here described is a part of a master’s thesis
undergoing in the context of the project GreenSSCM1 which
intends to optimise energy consumption via software, trans-
forming high level software code into more suitable software
code. These performs the same tasks but consumes less energy.

The chosen programming languages are C and C++ accord-
ing to the general decision taken in the context of GreenSSCM.
In addition, they are also nowadays two of the programming
languages more used.

For C/C++ compiler was chosen GCC2(v.5.1.0) because it
is a robust option, well documented, the most widely used and
this allows different code optimization levels.

The last fundamental decision is concerned with the target
machine, to set up the assembly code that will be generated.
Of course, the solution to be developed completely depends
on the instruction set of the machine selected. Accounting for
that Intel is the manufacturer with the largest market share in
recent years (57% in 2012, 65% in 2013), and is currently
present in over 80 percent of the computers sold worldwide, it
is imperative to use an Intel microprocessor for more relevant
results [7][8][9].

This paper is organized as follows. In section III are
described the main elements to carry out this experimental
study. In section II it is referred a similar study in our context
for embedded systems. In section IV are specified the used
GCC optimizations and explained the measurement process.
In section V are shown and analyzed the results obtained.
Lastly, in section VI a Conclusion is devised focusing the main
considerations of the present study.

1Green Software for Space Control Mission, a research project involving
the company VisionSpace Technologies and Universidade do Minho running
under Compete and supported by QREN.
website: http://visionspace.dnsdynamic.com/GreenSSCM

2https://gcc.gnu.org/

D. Branco and P. R. Henriques · Impact of GCC optimization levels in energy consumption during C/C++ program execu...

978-1-4673-9868-8/15/$31.00 c©2015 IEEE – 52 –

II. RELATED WORK

Despite the fact that energy consumption subject is only
a research topic in recent years (largely due to the massive
widespread of quite advanced wireless and mobile devices),
already at the beginning of this century appeared some projects
considering compilers precisely as a way to combat it. In 2001
the standard optimization levels -O1 to -O4 were evaluated to
understand the effect of a few individual optimization of DEC
Alpha’s cc compiler on power and energy consumption of the
processor. The authors concluded that when the optimizations
decrement the number of instructions to be executed, also the
energy consumption is reduced [10]. In the same year, another
study was conducted to explore the effect of the compilers for
existing processor architectures addressing the same problem.
They concluded that the compiler optimizations has enough
potential to achieve some reduction in energy consumption,
but it would be necessary to expose more innovating micro-
architectural features to the compilers, in order to obtain
substantial gains in energy saving [11].

There are also some studies in which algorithms are
designed to select combinations of compiler optimization flags
that, for a given input program, generate a machine code with
a better performance at runtime (without taking into account
the energy issues or flags that have emerged in more recent
versions of GCC) [12][13][5]. If there is indeed a relationship
between the optimizations applied by the GCC and the energy
consumption of programs, such algorithms (or variants thereof)
may be very useful. This investigation will be left for future
work.

Considerations for energy efficiency are especially relevant
at the level of embedded platforms. In [5] they use GCC, 10
benchmarks and 5 different embedded platforms to analyze
the energy consumption of a large number of compile options.
Through hardware power measurements and some case studies
explore various hypotheses and conclude, among other many
things, the execution time and energy consumption are corre-
lated in most general cases.

Until this day there is very little work that explores widely
the impact that the various compilation options provided by
compilers (including GCC) has on the energy consumption of
the software that use them [5].

III. EXPERIMENTAL SETUP

The three main elements to carry out this experimental
study are: a platform for taking measurements (a laptop);
the software that makes measurements; and also the software
packages that will be measured.

A. Testing Platform

The study was accomplished on a laptop Asus N56JN-
DM127H, running under Linux. The hardware/software re-
sources most relevant characteristics for the required analysis
are: Ubuntu GNOME 14.04.2 LTS 64-bit (Linux Kernel 3.16);
Intel R© Core i7-4710HQ up to 3.5 GHz, Haswell Family; 8 GB
DDR3L 1600MHz; and NVIDIA R© GeForce R© GT 840M, 2GB
DDR3 VRAM.

B. Measurement Software

The energy measurement necessary to make the compar-
ative study was performed using Running Average Power
Limit3(RAPL) interface. RAPL allows, among other features
to read the Machine-Specific Registers containing information
about the energy consumed by the CPU, RAM and GPU during
a given period of time [14][15].

Performance Application Programming Interface4(PAPI)
and the Perf5 were also considered as alternatives to RAPL
to take the desired measures. However after analysing pros
and cons of each one, these options were discarded. On
one hand PAPI is an event-driven tool what makes its use
inadequate in our context. On the other hand, Perf only allows
to obtain information about the CPU and we were interested
in investigating the other possible sources of consumption, the
memory and the GPU.

RAPL was used through an extension developed by the
team of this study to an existing tool6, that simply is reading
the referred register. This extension keeps all other features
previously present, such as setting the number of the CPU
cores that will be measured, and adds the ability to measure
the consumption of a certain operation and also the time spent
for its completion. For this study the operation above referred
is the compilation and/or the execution of a program, being
only necessary to inform the path to the respective makefile
or the executable. This extension can also be used in other
areas of study, because it allows to measure the compilation
of a program in any language that contains their dependencies
expressed in a makefile or even any other executable. The
distinct features that this tool provides are managed through
a mechanism of flags that are passed as arguments when the
tool is invoked.

C. Measured Software

In the experiment described in this paper we have analyzed
6 programs that differ in some aspects such as: main objective,
code complexity, external dependencies and also compile and
execution time. Despite these differences, were all chosen
according to the following criteria:

• Open source code, allowing to analyze in more detail
the complexity and how the objectives are achieved;

• Running under Linux environment;

• Coded in one of the programming languages chosen
in the context of GreenSSCM project, C or C++;

• Not interactive, this is independent of user interaction
during execution, thus avoiding waiting for input that
would have interference in the measured values and
also allows automate this part of the process;

• No graphical interface;

• Total execution time less than 60s, to prevent possible
overflows.

3https://01.org/blogs/tlcounts/2014/running-average-power-limit-—rapl
4http://icl.cs.utk.edu/papi/
5https://perf.wiki.kernel.org/index.php/Main Page
6https://github.com/deater/uarch-configure/tree/master/rapl-read

IEEE 13th International Scientific Conference on Informatics · informatics’2015 · November 18-20 · Poprad · Slovakia

– 53 –

Pro-

gram
PL IF OF CC ED

ACT

(s)

AET

(s)

MMC C None None Low None 0,077 24,800

Grades

C

(Flex

and

Yacc)

Txt Html Low Few 0,231 32,908

Bzip C Wav Bz2
Medium

None 1,501 23,773

Bzip2 C Wav Bz2
Medium

Several 1,787 23,939

Oggenc
C Wav Ogg High None 3,908 23,338

Pbrt C++ Pbrt Exr High Lot 41,516 19,265

TABLE I. SOME FEATURES OF THE MEASURED PROGRAMS.

Although the many particularities of the chosen programs,
there are some characteristics common to all of them that can
be used in order to be possible to perform a comparative study,
without knowing in detail the code of each studied programs.

In Table I we characterize the selected programs re-
garding some of their features. The parameters considered
are: (PL)programming language; the (IF)input and (OF)output
files; (CC)code complexity (low, medium or high); and the
(ED)amount of external dependencies (none, few, several or
lot). Average compile and execution times(ACT, AET) are also
included just to figure out a quantitative description of their
size/complexity.

A brief description of each one of the subject pro-
grams follows: MMC the multiplication of matrices with
size 1024x1024 using 6 different methods; Grades given the
names and grades of students in a given discipline, generates
the final evaluation; Bzip and Bzip2 are file compression
tools (replacing the input file); Oggenc perform file format
conversion (creating a new file); Pbrt executes the rendering
of images using ray tracing.

IV. METHODOLOGY

After defining the software and hardware environment for
the study, and the set of programs to test, in this section
we will describe the main decisions taken in what concerns
the parameterization of GCC in order to configure it for fair
comparisons. We also define the strategies followed to get the
measures and to obtain significant statistical results.

A. Optimizations Flags

The GCC compiler has hundreds of flags related to the
optimization of the generated code specific to a given machine.
Due to the specificity of each of the flags and the fact
that sometimes they are mutually exclusive, this study will
only focus on the several optimization levels specified by the
compiler switch -O. There are 7 different levels of optimization
and each contains a number of individual flags that are enabled
or disabled (depending of the level). Below are described the
referred levels with some more detail [16][17].

-O0: Default level (disables all optimization flags).
Reduce compilation time and make debugging
produce the expected results.

-O1: Basic optimization level (enables up to 39 flags).
Reduce code size and execution time without
taking much compilation time.

-O2: Recommended optimization level (enables up to
73 flags). Enables all existing in -O1 and the
remaining that do not include a space-speed trade-
off, increasing both compilation time and the
performance of the generated code.

-Os: Reduced code size (enables up to 65 flags). En-
ables all -O2 options that do not increase the size
of the generated code. Useful for target machines
with limited disk storage space and/or CPUs with
small cache sizes (with dramatic improvement of
performance).

-O3: Highest level of optimization (enables up to 82
flags). Enables all existing in -O2 and further
some very heavy in both time compile and mem-
ory usage terms. It is not guaranteed that the code
generated is better in terms of performance than
the previous set.

-Ofast: Disregard strict standards compliance optimiza-
tion (enables up to 85 flags). Enables all -O3
options and more 3 that are not valid for all
standard-compliant programs.

-Og: Optimize debugging experience (enables up to 74
flags). Offer a good debugging experience en-
abling all optimizations that do not interfere with
debugging and reasonable level of optimization
while maintaining fast compilation.

After a preliminary test phase, we decided not taking into
consideration the levels -Os and -Og for this study. The level
-Og perform optimizations which do not contribute to an
energy reduction compared to the other 5 discussed. Although
the level -Os has some potential for significant improvement in
some particular cases, for example where their optimizations
are capable to fit the code in the cache, we decided to leave it
for future work in order to study them more deeply.

B. Measurement Process

After having selected the programs to be studied and de-
fined the set of optimizations to be compared, it was mandatory
to setup the measurement process to apply to all programs
in order to cover all the desired cases. This process can be
described by the following steps:

1) Choose a program and its Makefile;
2) Choose the desired optimization level;
3) Execute 100 times the measuring tool for the program

and the chosen optimization level;
4) Process the output generated by each invocation of

the measuring tool:

a) Get the energy consumption and time values;
b) Ignore the 10 highest and lowest values;
c) Compute the average of the remaining 80

values;
d) Generate a table and plot with the results in

an HTML page.

5) Repeat step 2, 3 and 4 for all 5 levels of optimization;
6) Repeat step 1 to 5 for all 6 programs.

All measurements relating to a program were performed
uninterruptedly while avoiding fluctuations related to the test-
ing platform (e.g. pre-loading of data, memory heating, etc.).
During the measurement process all executions of the intended

D. Branco and P. R. Henriques · Impact of GCC optimization levels in energy consumption during C/C++ program execu...

– 54 –

programs were forced to run on just one core of the CPU,
through the tool flag -n, to ignore efficiency issues related
to the parallelization that some programs may allow. The
processing of the output (referred in item 4 above) was
done using essentially PERL7(for parsing the results of each
operation) and GNUPlot8(to generate plots of each program).

V. DISCUSSION OF RESULTS

To illustrate the results obtained, three examples of charts
are displayed in Figure 1, Figure 2 and Figure 3. The remaining
charts, as well as the HTML pages, can be found in the online
repository9 of this work.

Fig. 1. Plot with the results of MMC measurements.

Fig. 2. Plot with the results of Oggenc measurements.

In all analyzed charts it was found that, due to the classes
of the programs selected, the energy consumed by the GPU
is reduced. It is clear that energy and time consumptions
are undoubtedly lower when selected an optimization level
different from the default, and that the optimization is greater
for more complex source codes (in the case of pbrt there was
a reduction of almost 75%). For low complexity programs it

7https://www.perl.org/
8http://www.gnuplot.info/
9https://github.com/david-branco/gcc-optimization-energy-article

Fig. 3. Plot with the results of Pbrt measurements.

�
�

�
�

�
��

Program

Level
-O0 -O1 -O2 -O3 -Ofast

MMC 334.478 23.009 22.719 21.930 21.864

Grades 38.141 32.625 31.503 31.170 31.101

Bzip 37.646 20.375 20.312 20.326 20.207

Bzip2 37.641 20.727 20.580 20.254 20.493

Oggenc 46.405 19.773 17.397 17.001 16.118

Pbrt 45.502 13.126 12.851 12.547 12.302

TABLE II. EXECUTION TIMES OF PROGRAMS IN SECONDS BY

OPTIMIZATION LEVEL.

�
�

�
�

�
��

Program

Level
-O0 -O1 -O2 -O3 -Ofast

MMC 314.970 220.796 219.703 210.974 210.213

Grades 290.560 240.781 227.802 233.465 230.638

Bzip 339.544 174.628 177.310 177.555 176.794

Bzip2 346.031 181.297 183.455 182.846 183.314

Oggenc 480.964 191.291 173.362 169.072 159.202

Pbrt 463.963 122.835 120.753 117.074 114.278

TABLE III. SELECTED PROGRAMS AND THEIR ENERGY CONSUMPTION

BY OPTIMIZATION LEVEL.

was confirmed that none of these levels is much higher or
lower than the remaining, with only a minimal difference (in
the extreme case may not even exist) among some of them
because of individual optimizations that each enables/disables.

Considering all optimization levels which are not the
default, analyzing the execution time (Table II), memory and
CPU (Table III) energy consumption, and ignoring minimal
differences of values between levels, it appears that in most
cases the -Ofast level is the most efficient unlike -O1 option.
It is also perceptible that, although there is no much difference
between the -O2 and -O3 levels, -O3 is slightly more efficient
especially when the program complexity increases.

One of the main objectives of this work was to determine if
programs optimized at compilation time also have an optimized
energy consumption during execution. Although the data ob-
tained clearly demonstrate a great optimization of energy
consumption, when selected optimization levels which are not
the default, however it is also noticeable that the execution time
of programs previously optimized also decreases dramatically
(generally for shorter times was obtained lower consumption).

Thus, it is not possible to conclude with certainty GCC’s
strategies on the matter. We saw that in all cases energy

IEEE 13th International Scientific Conference on Informatics · informatics’2015 · November 18-20 · Poprad · Slovakia

– 55 –

consumption is directly related to execution time. In fact
analyzing all graphs, their depict the data collect along the
experiment, we can say that the timeline follows the trend
of the columns with the consumption of each component by
optimization flag.

VI. CONCLUSION

In this paper we defined the objectives of a master’s
thesis in the context of GreenSSCM research, and described
an experimental test aimed at studying the impact of GCC
optimization on the energy consumed by the compiled C/C++
programs at runtime. We concluded that energy decreases as
faster is the code and so we can affirm that GCC optimizations
techniques have a positive impact in favor of green computing
concerns. To software developers, this conclusion means that
they do not need an extra effort when/if they decide to have
their code more efficient concerning both execution time and
energy consumption.

The framework developed to perform the necessary mea-
surements is also an important result of this work. It was devel-
oped in a rather generic and comprehensive manner, allowing
the analysis of several operations and programming languages,
in order to be possible its usage in other GreenSSCM projects.
Also, the overall output produced by the measurements per-
formed in this study are important because they can be used
as a good workbench for other green oriented research.

The obtained results are in line with what was the ini-
tial intuition of GreenSSCM team members and also the
conclusions already reported in [5] for embedded systems.
After finish this experimental work, we were aware that the
time-energy relationship was already described and explained
in the Technical Report [18], corroborating our experimental
findings.

However a lot of work remains to be done to understand the
strategies followed in those optimization algorithms in order
to understand if there is still room for more reduction.

Concluded the study and taking into account the results
obtained, namely the fact that there are some improvements
in energy consumption produced by compiler optimizations
(albeit indirectly), some other working hypotheses rise up
to proceed within this scope. A first one is to study the
application of the algorithms referred in Section II in order
to obtain specific sets of flags that can further reduce power
consumption. Another one is to look for special types of
machine instructions that can be chosen by the compiler during
the code generation/optimization phase regarding the energy
consumption. This is, we intend to analyze the information
provided by the current machines’ Instruction Sets to verify if
the energy consumption cost is provided (explicitly available)
to be considered by the compiler’s optimization algorithms..

ACKNOWLEDGMENTS

This work is co-funded by the North Portugal Regional
Operational Programme, under the National Strategic Ref-
erence Framework (NSFR), through the European Regional
Development Fund (ERDF), within project GreenSSCM -
NORTE-07-02-FEDER-038973.

We would like to thank all previous reviewers of this paper
for their advices and guidelines for future work.

REFERENCES

[1] T. Guelzim and M. S. Obaidat, Handbook of Green Information and

Communication Systems. Academic Press, 2013, ch. Chapter 8, pp.
209–227.

[2] R. R. Harmon and N. Auseklis, “Sustainable IT services: Assessing the
impact of green computing practices,” in Management of Engineering

Technology, 2009. PICMET 2009. Portland International Conference

on, 2009, pp. 1707–1717.

[3] L. Minas and B. Ellison, Energy efficiency for information technology:

How to reduce power consumption in servers and data centers. Intel
Press, 2009.

[4] B. Ellison, “The Problem of Power Consumption in Servers,” Energy

Efficiency for Information Technology, pp. 1–17, 2009.

[5] J. Pallister, S. J. Hollis, and J. Bennett, “Identifying compiler options to
minimize energy consumption for embedded platforms,” The Computer

Journal, vol. 58, no. 1, pp. 95–109, 2013.

[6] U. Kremer, “Low power/energy compiler optimizations,” 2004.

[7] ITCandor, “Intel Leads,” 2012. [Online]. Available: http://www.
itcandor.com/microprocessor-q312/

[8] ——, “Market Down,” 2013. [Online]. Available: http://www.itcandor.
com/chip-q213/

[9] I. King, “Intel Forecast Shows Rising Server
Demand, PC Share Gains,” 2015. [On-
line]. Available: http://www.bloomberg.com/news/articles/2015-07-15/
intel-forecast-shows-server-demands-makes-up-for-pc-market-woes

[10] M. Valluri and L. John, “Is compiling for performance==
compiling for power,” Interaction between compilers and

computer architectures, p. 101, 2001. [Online]. Available:
http://books.google.com/books?hl=en{&}amp;lr={&}amp;id=
pE4guNvx8u4C{&}amp;oi=fnd{&}amp;pg=PA101{&}amp;dq=
Is+Compiling+for+Performance+==+Compiling+for+Power?{&}amp;
ots=Gf3qnsc59G{&}amp;sig=tW07EpiJySGmojXzJ4HsjotGPWQ

[11] L. N. Chakrapani, P. Korkmaz, V. J. Mooney III, K. V. Palem,
K. Puttaswamy, and W. F. Wong, “The Emerging Power Crisis in
Embedded Processors: What Can a Poor Compiler Do?” Proceedings

of the 2001 International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems, pp. 176–180, 2001. [Online].
Available: http://doi.acm.org/10.1145/502217.502246

[12] Z. Pan and R. Eigenmann, “Fast and Effective Orchestration
of Compiler Optimizations for Automatic Performance Tuning,”
International Symposium on Code Generation and Optimization,
no. ii, pp. 319–332, 2006. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1611551

[13] T. Patyk, H. Hannula, P. Kellomaki, and J. Takala, “Energy consumption
reduction by automatic selection of compiler options,” 2009

International Symposium on Signals, Circuits and Systems, pp. 1–4,
2009. [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=5206106{&}contentType=Conference+Publications

[14] Intel 64 and IA-32 Architectures Optimization Reference Manual,
325462nd ed.

[15] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using RAPL,” ACM SIGMETRICS

Performance Evaluation Review, vol. 40, 2012.

[16] “GNU - GCC,” 2014. [Online]. Available: http://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

[17] “GCC optimization - Gentoo Wiki,” 2015. [Online]. Available:
https://wiki.gentoo.org/wiki/GCC optimization

[18] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in Parallel Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, May 2013, pp. 661–672.

D. Branco and P. R. Henriques · Impact of GCC optimization levels in energy consumption during C/C++ program execu...

– 56 –

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

